

COURSE DESCRIPTION FORM

2021/2022

COURSE INFORMATON				
Course Code	MSN 670	Course Title	BASIC DIAGRAMS IN METALI	LURGY
Semester	Credits	ECTS	C + P + L Hour	Prerequisites
Spring	3	10	3+0+0	-

Language of Instr	ruction	Course Level	Course Type
English		PhD	Elective
Course Coordinator	Assoc. Prof.	Dr. Ahmet TURAN	
Instructors	Assoc. Prof.	Dr. Ahmet TURAN	
Assistants	-		
Goals	of the basic		properties and application areas sized metallurgy fields which are
Content	metallurgy,		luction diagrams used in chemical physical metallurgy, other heat the field of corrosion.
Contribution of the Course to the Professional Education	and the dev	provide students with a knowle elopment of their microstructu ms in the field of metallurgy.	edge of the production of metals Iral properties by learning the

Course Learning Outcomes	Detailed Program Outcomes	Teaching Methods	Assessment Methods
Thermodynamic fundamentals and plotting of basic diagrams.	1a, 1b, 4a	1, 2, 3	A, E, G
Reading basic diagrams.	1b, 2a, 6c, 7c, 7d	1, 2	A, E, G
Effects of changing process conditions on product properties.	1b, 2a, 4a, 6a, 6c, 7c, 7d	1, 2	A, E, G

	1: Lecture by instructor, 2: Lecture by instructor with class discussion, 3:
	Problem solving by instructor, 4: Use of simulations, 5: Problem solving
Teaching	assignment, 6: Reading assignment, 7: Laboratory work, 8: Term research
Methods:	paper, 9: Presentation by guest speaker, 10: Sample Project Review, 11:
	Interdisciplinary group working,12:

COURSE DESCRIPTION FORM

2021/2022

Assessment Methods: A: Written exam, B: Multiple-choice exam C:Take-home quiz, D: Experiment report, E: Homework, F: Project, G: Presentation by student, H: ...

COURSE CONTENT				
Week	Topics	Study Materials		
1	Introduction to basic diagrams in metallurgy	Textbook, Lecture notes		
2	Partial pressure – temperature diagrams	Textbook, Lecture notes		
3	Kellog's diagrams	Textbook, Lecture notes		
4	Ellingham diagrams and derivatives	Textbook, Lecture notes		
5	Bauer-Glaessner diagram	Textbook, Lecture notes		
6	Yazawa's diagram	Textbook, Lecture notes		
7	EMF series and Pourbaix diagrams	Textbook, Lecture notes		
8	Unary phase diagrams	Textbook, Lecture notes		
9	Binary phase diagrams	Textbook, Lecture notes		
10	Ternary phase diagrams	Textbook, Lecture notes		
11	Iron-carbon phase diagram	Textbook, Lecture notes		
12	TTT diagrams	Textbook, Lecture notes		
13	Homework assignment presentations			
14	Homework assignment presentations			

RECOMMENDED SOURCES		
Textbook	 Lecture notes, D.A.Brandt, J.C.Warner, 2005, Metallurgy Fundamentals, Goodheart-Willcox. Seshadri Seetharaman, Fundamentals of Metallurgy, 2005, CRC Press. Fathi Habashi, Hanbook of Extractive Metallurgy, Vol: I-IV, 1997, Wiley. F. C. Campbell, Phase Diagrams: Understanding the Basics, 2012. 	

2021/2022

Additional Resources

MATERIAL SHARING

Documents Lecture notes and articles

Assignments Homework, Presentations

ASSESSMENT			
IN-TERM STUDIES	NUMBER	PERCENTAGE	
Homework and Presentations	2	60	
Final	1	40	
Total		100	
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE	40		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRAD	E	60	
Total		100	

COURSE CATEGORY

Field Course

	COURSE'S CONTRIBUTION TO PROGRAM OUTCOMES	
No	Program Learning Outcomes	check $$
1a	Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline,	\checkmark
1b	Ability to use theoretical and applied knowledge in these areas in complex engineering problems.	\checkmark
2a	Ability to identify, formulate, and solve complex engineering problems,	\checkmark
2b	Ability to select and apply proper analysis and modeling methods for this purpose.	
3a	Ability to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result,	
3b	Ability to apply modern design methods for this purpose.	
4a	Ability to devise, select and use modern techniques and tools needed for analyzing and solving complex problems encountered in engineering practice.	\checkmark
4b	Ability to employ information technologies effectively.	
5a	Ability to design experiments for investigating complex engineering problems or discipline specific research questions,	

YEDITEPE UNIVERSITY COURSE DESCRIPTION FORM 2021/2022

5b	Ability to conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or discipline specific research questions.	
6a	Ability to work efficiently in intra-disciplinary teams,	\checkmark
6b	Ability to work efficiently in multi-disciplinary teams,	
6c	Ability to work individually.	\checkmark
7a	Ability to communicate effectively in Turkish, both orally and in writing,	
7b	Knowledge of a minimum of one foreign language,	
7c	Ability to write effective reports and comprehend written reports, prepare design and production reports,	\checkmark
7d	Ability to make effective presentations,	\checkmark
7e	Ability to give and receive clear and intelligible instructions.	
8a	Recognition of the need for lifelong learning, ability to access information, ability to follow developments in science and technology,	
8b	Ability to continue to educate him/herself.	
9a	Consciousness to behave according to ethical principles and professional and ethical responsibility.	
9b	Knowledge on standards used in engineering practice.	
10a	Knowledge about business life practices such as project management, risk management, change management.	
10b	Awareness in entrepreneurship and innovation.	
10c	Knowledge about sustainable development.	
11a	Knowledge about the global and social effects of engineering practices on health, environment, and safety,	
11b	Knowledge about contemporary issues of the century reflected into the field of engineering.	
11c	Awareness of the legal consequences of engineering solutions.	

2021/2022

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION			
Activities	Quantity	Duration (Hour)	Total Workload (Hour)
Course Duration	14	3	42
Hours for off-the-classroom study (Pre-study, practice)	14	14	196
Homework and Presentation	2	5	10
Final	1	2	2
Total Work Load			250
Total Work Load / 25 (h)			10
ECTS Credit of the Course			10

Prepared by:	Preparation date:
Assoc. Prof. Dr. Ahmet TURAN	12.04.2022